ACCUEIL

Consignes aux
auteurs et coordonnateurs
Nos règles d'éthique
Autres revues >>

Document Numérique

1279-5127
 

 ARTICLE VOL 17/1 - 2014  - pp.61-84  - doi:10.3166/dn.17.1.61-84
TITRE
Quantification et identification précises des concepts d'une requête

TITLE
Accurate and effective latent concept modeling for ad hoc information retrieval

RÉSUMÉ

Une requête est la représentation du besoin d’information d’un utilisateur, et est le résultat d’un processus cognitif complexe qui mène souvent à un mauvais choix de mots-clés. Nous proposons une méthode non supervisée pour la modélisation de concepts implicites d’une requête, dans le but de recréer la représentation conceptuelle du besoin d’information initial. Nous utilisons l’allocation de Dirichlet latente (LDA) pour détecter les concepts implicites de la requête en utilisant des documents pseudo-pertinents. Nous évaluons cette méthode en profondeur en utilisant deux collections de test de TREC. Nous trouvons notamment que notre approche permet de modéliser précisément les concepts implicites de la requête, tout en obtenant de bonnes performances dans le cadre d’une recherche de documents.



ABSTRACT

A keyword query is the representation of the information need of a user, and is the result of a complex cognitive process which often results in under-specification. We propose an unsupervised method namely Latent Concept Modeling (LCM) for mining and modeling latent search concepts in order to recreate the conceptual view of the original information need. We use Latent Dirichlet Allocation (LDA) to exhibit highly-specific query-related topics from pseudo-relevant feedback documents. We define these topics as the latent concepts of the user query. We perform a thorough evaluation of our approach over two large ad-hoc TREC collections. Our findings reveal that the proposed method accurately models latent concepts, while being very effective in a query expansion retrieval setting.



AUTEUR(S)
Romain DEVEAUD, Éric SANJUAN, Patrice BELLOT

MOTS-CLÉS
Information retrieval, topic modeling, pseudo-relevance feedback, LDA, TRE

KEYWORDS
recherche d’information, modélisation thématique, retour de pertinence simulé, LDA, TREC

LANGUE DE L'ARTICLE
Anglais

 PRIX
• Abonné (hors accès direct) : 7.5 €
• Non abonné : 15.0 €
|
|
--> Tous les articles sont dans un format PDF protégé par tatouage 
   
ACCÉDER A L'ARTICLE COMPLET  (326 Ko)



Mot de passe oublié ?

ABONNEZ-VOUS !

CONTACTS
Comité de
rédaction
Conditions
générales de vente

 English version >> 
made by WAW Lavoisier