ACCUEIL

Consignes aux
auteurs et coordonnateurs
Nos règles d'éthique
Autres revues >>

Document Numérique

1279-5127
 

 ARTICLE VOL 17/3 - 2014  - pp.31-51  - doi:10.3166/dn.17.3.31-51
TITRE
Classification de flux de documents évolutifs avec apprentissage de classes inconnues

TITLE
Evolving document stream classification with unknown class detection

RÉSUMÉ

Dans cet article, on propose un algorithme semi-supervisé actif pour la classification de flux continu de documents. Cet algorithme, basé sur une méthode adaptative d’apprentissage non supervisé, permet de repérer les documents les plus informatifs à l’aide d’une mesure d’incertitude pour demander leur étiquette à un opérateur. Il construit et maintient un modèle sous forme d’un graphe à topologie dynamique dont les nœuds sont des représentants de documents étiquetés, formant ce qu’on appelle "l’espace couvert par les classes connues". Il permet de détecter automatiquement les nouvelles classes apparaissant dans le flux. Un document est identifié comme membre d’une nouvelle classe ou d’une classe connue, selon qu’il se trouve à l’extérieur ou à l’intérieur de l’espace couvert par les classes connues. Les expérimentations effectuées sur des ensembles de documents réels montrent que la méthode nécessite peu de documents à étiqueter et qu’elle atteint des performances comparables aux méthodes supervisées qui sont entraînées sur des ensembles de documents présents en mémoire et entièrement étiquetés.



ABSTRACT

In this paper, we propose a stream-based semi-supervised active learning method for document classification, which is able to query (from an operator) the class labels of documents that are informative, according to an uncertainty measure. The method maintains a dynamically evolving graph topology of labelled document-representatives, which constitutes a covered feature space. The method is able to automatically discover the emergence of novel classes in the stream. An incoming document is identified as a member of a novel class or an existing class, depending on whether it is outside or inside the area covered by the known classes. Experiments on different real datasets show that the proposed method requires a small amount of the incoming documents to be labelled, in order to learn a model which achieves better or equal accuracy than to the usual supervised methods with fully labelled training documents.



AUTEUR(S)
Mohamed-Rafik BOUGUELIA, Yolande BELAÏD, Abdel BELAÏD

MOTS-CLÉS
flux de documents, classification, identification de nouvelles classes

KEYWORDS
document stream, classification, novel class identification

LANGUE DE L'ARTICLE
Français

 PRIX
• Abonné (hors accès direct) : 7.5 €
• Non abonné : 15.0 €
|
|
--> Tous les articles sont dans un format PDF protégé par tatouage 
   
ACCÉDER A L'ARTICLE COMPLET  (923 Ko)



Mot de passe oublié ?

ABONNEZ-VOUS !

CONTACTS
Comité de
rédaction
Conditions
générales de vente

 English version >> 
Lavoisier