ACCUEIL

Consignes aux
auteurs et coordonnateurs
Nos règles d'éthique
Autres revues >>

Document Numérique

1279-5127
 

 ARTICLE VOL 19/2-3 - 2016  - pp.11-30  - doi:10.3166/dn.19.2-3.11-30
TITRE
Collecte ciblée à partir de flux de données en ligne dans les médias sociaux. Une approche de bandit contextuel

TITLE
Dynamic data capture from social media streams. A contextual bandit approach

RÉSUMÉ

La plupart des médias sociaux offrent un accès aux flux de données produites par leurs utilisateurs. L’utilisation des API fournies pour collecter ces données, relativement à un besoin spécifique, peut se révéler une tâche complexe car elle nécessite une sélection soigneuse des sources. Cela représente un problème particulièrement difficile dans les réseaux sociaux de grandes tailles étant donné le nombre important d’utilisateurs potentiellement intéressants, la non-stationnarité intrinsèque de leur comportement, et les restrictions d’accès aux données. Dans cet article, nous proposons une approche permettant d’anticiper les profils les plus susceptibles de publier des contenus pertinents et de sélectionner un sous ensemble de comptes à chaque itération. Nous formalisons cette tâche comme un problème de bandit contextuel avec sélections multiples. Les expérimentations menées sur le réseau social Twitter montrent l’efficacité de notre approche dans un scénario réel.



ABSTRACT

Social media usually provide streaming data access that enable dynamic capture of the social activity of their users. Leveraging such APIs for collecting data that satisfy a given pre-defined need may constitute a complex task, that implies careful stream selections. On large social media, this represents a very challenging task due to the huge number of potential targets, the intrinsic non-stationarity of user’s behavior, and restricted access to the data. We propose an approach that anticipates which profiles are likely to publish relevant contents and dynamically selects a subset of accounts to follow at each iteration using a contextual bandit algorithm. We conduct experiments on Twitter that demonstrate the empirical effectiveness of our approach in real-world settings. MOTS-CLES : bandit banchot, apprentissage statistique, medias sociaux.



AUTEUR(S)
Thibault GISSELBRECHT, Sylvain LAMPRIER, Patrick GALLINARI

MOTS-CLÉS
bandit banchot, apprentissage statistique, médias sociaux.

KEYWORDS
multi-armed bandit, machine learning, social media.

LANGUE DE L'ARTICLE
Français

 PRIX
• Abonné (hors accès direct) : 7.5 €
• Non abonné : 15.0 €
|
|
--> Tous les articles sont dans un format PDF protégé par tatouage 
   
ACCÉDER A L'ARTICLE COMPLET  (474 Ko)



Mot de passe oublié ?

ABONNEZ-VOUS !

CONTACTS
Comité de
rédaction
Conditions
générales de vente

 English version >> 
made by WAW Lavoisier