ACCUEIL

Consignes aux
auteurs et coordonnateurs
Nos règles d'éthique
Autres revues >>

Document Numérique

1279-5127
 

 ARTICLE VOL 20/1 - 2017  - pp.9-38  - doi:10.3166/dn.2017.0000
TITRE
Entrepôts de données orientés documents : cuboïdes étendus. Modèles et cuboïdes NoSQL orientés documents

TITLE
Document-oriented data warehouses: models and extended cuboids

RÉSUMÉ

Avec l’essor ces dernières années des grandes plateformes Web (par exemple, Google, Facebook, Twitter, Amazon), ont été développées des solutions de gestion des mégadonnées (big data) basées sur des approches décentralisées permettant la gestion et le stockage de gigantesques masses de données. Cette approche décentralisée repose sur le principe de la scalabilité, c’est-à-dire l’ajustement d’une manière progressive et continue du stockage et des traitements au volume des données. Ce type d’architecture distribuée a connu récemment le développement de systèmes de gestion de fichiers massivement distribués et de nouvelles techniques de parallélisation massive des traitements. Adossés à ce contexte de distribution massive, différents systèmes de stockage sont apparus ces dernières années. Ces systèmes, qualifiés de systèmes not-only-SQL (ou NoSQL), relaxent les fondements de l’approche relationnelle pour pouvoir supporter les masses de données distribuées. De ce fait, il est envisageable de construire des entrepôts de données massives reposant sur ce principe de scalabilité de l’espace de stockage. Dans ce papier, nous étudions l’instanciation d’entrepôts de données avec les systèmes orientés documents. Dans un premier temps, nous étudions les enjeux primaires des entrepôts tels que la modélisation, l’interrogation, le chargement des données et les cubes OLAP. Dans un deuxième temps, nous proposons des améliorations qui sont spécifiques aux systèmes orientés documents. En particulier, nous proposons des versions étendues des cubes OLAP qui exploitent l’imbrication. Nous montrons que ces cubes répondent plus rapidement à des charges de travail composées de requêtes OLAP de type “drill-down”.



ABSTRACT

With the rise of large Web platforms (e.g, Google, Facebook, Twitter, Amazon), solutions have been developed recently for big data management based on decentralized approaches allowing managing and storing a large amount of data. These solutions have permitted the development of NoSQL data management systems (Not Only SQL). These NoSQL solutions allowed us to consider different responses, especially from the point of view of managing large amounts of data systems). On the one hand, we analyze several issues including modeling, querying, loading data and OLAP cuboids. We compare document-oriented models (with and without normalization) to analogous relational database models. On the other hand, we suggest improvements in order to benefit from document-oriented features. We focus particularly on extended versions of OLAP cuboids that exploit nesting and arrays. They are shown to work better on workloads with drill-down queries.



AUTEUR(S)
Max CHEVALIER, Mohammed EL MALKI, Arlind KOPLIKU, Olivier TESTE, Ronan TOURNIER

MOTS-CLÉS
NoSQL, système orienté-document, entrepôts de données big data, cuboïde OLAP système d’information

KEYWORDS
NoSQL, document-oriented system, big data warehouse, OLAP cuboid information system

LANGUE DE L'ARTICLE
Français

 PRIX
• Abonné (hors accès direct) : 7.5 €
• Non abonné : 15.0 €
|
|
--> Tous les articles sont dans un format PDF protégé par tatouage 
   
ACCÉDER A L'ARTICLE COMPLET  (18,10 Mo)



Mot de passe oublié ?

ABONNEZ-VOUS !

CONTACTS
Comité de
rédaction
Conditions
générales de vente

 English version >> 
Lavoisier