Vous trouverez ci-dessous les références de l’article :

Recherche et représentation de communautés dans un grand graphe. Une approche combinée

Nathalie Villa-Vialaneix, Taoufiq Dkaki, Sébastien Gadat, Jean-Michel Inglebert, Quoc-Dinh Truong, Document Numérique 2011, 14 (1)

doi:10.3166/dn.14.1.59-80

 

Aubert D., Tulip, Proceedings of the Graph Drawing, P. Mutzel, M. Jünger, S. Leipert (Eds), Lecture Notes in Computer Science, vol. 2265, Springer-Verlag, 2001, p. 335-337.

Capoccia A., Servedioa V., Caldarellia G., Colaiorib F., Detecting communities in large networks, Physica A, Statistical Mechanics and its Applications, vol. 352, n° 2-4, 2005, p. 669-676.

Chuang J.H., Lin C.C., Yen H.C., Drawing graphs with nonuniform nodes using potential fields, Proceedings of the Graph Drawing, Perugia, Italy, G. Liotta (Eds.), 2004, p. 460-465.

Condon A., Karp R.M., Algorithms for graph partitioning on the planted partition model, Random Structures and Algorithms, vol. 18, n° 2, 2001, p. 116-140.

Dong Y., Zhuang Y., Chen K., Tai X., A hierarchical clustering algorithm based on fuzzy graph connectedness, Fuzzy Sets and Systems, vol. 157, n° 13, 2006, p. 1760-1774.

Eades P., Huang M.L., Navigating clustered graphs using force-directed methods, Journal of Graph Algorithms and Applications, 2000, p. 157-181.

Eades P., A heuristic for graph drawing, Congressus Nutnerantiunt, vol. 42, 1984, p. 149-160.

Fruchterman T., Reingold E., Graph drawing by force-directed placement, Software Practice and Experience, vol. 21, 1991, p. 1129-1164.
https://doi.org/10.1002/spe.4380211102

Hachul S., Juger M., An Experimental Comparison of Fast Algorithms for Drawing General Large Graphs, Proceedings of the Graph Drawing 2005, Limerick, Ireland, Lecture Notes in Computer Science, vol. 3843, Springer-Verlag, 2006, p. 235-250.

Hastings W.K., Monte Carlo sampling methods using Markov chains and their applications, Biometrika, vol. 57, n° 1, 1970, p. 97-109.

Kamada T., Kawai S., An algorithm for drawing general undirected graphs, Information Processing Letters, vol. 31, 1989, p. 7-15.
https://doi.org/10.1016/0020-0190(89)90102-6

Karouach S., Dousset B., Visualisation de relations par des graphes interactifs de grande taille, Journal of Information Sciences for Decision Making, vol. 6, n° 57, Mars 2003.

Kirpatrick S., Gelatt C.D., Vecchi M.P., Optimization by simulated annealing, Science, vol. 220, n° 4598, 1983, p. 671-680.

Knuth D.E., The Stanford GraphBase: A Platform for Combinatorial Computing, Addison-Wesley, Reading, MA, 1993.

Lakroum S., Devlaminck V., Terrier P., Biela Enberg P., Postaire J.G., Clustering of the Poincare vectors, Proceedings of IEEE International Conference on Image Processing ICIP 2005, September 11-14, 2005, Genoa, Italy.

Lehmann S., Hansen L.K., Deterministic modularity optimization, The European Physical Journal B, vol. 60, n° 1, 2007, p. 83-88.

Newman M., Finding community structure in networks using the eigenvectors of matrices, Pysical Review E, vol. 74, n° 036104, 2006.

Newman M., M. Girvan, Finding and evaluating community structure in networks, Physical Review E, vol. 69, n° 026113, 2004.

Noack A., An Energy Model for Visual Graph Clustering, Proceedings of the Graph Drawing, Perugia, Italy, G. Liotta (Eds.), 2004, p. 425-436.

Reichardt J., Bornholdt S., Statistical mechanics of community detection, Physical Review E, vol. 74, n° 016110, 2006.

Rossi F. et Villa-Vialaneix N., Optimizing an organized modularity measure for topographic graph clustering: a deterministic annealing approach, Neurocomputing, vol. 73, n° 7-9, 2010, p. 1142-1163.

Schaeffer S.E., Graph clustering, Computer Science Review, vol. 1, 2007, p. 27-64.
https://doi.org/10.1016/j.cosrev.2007.05.001

Truong Q.D., Dkaki T., Charrel P.J., An energy model for the drawing of clustered graphs, Actes du Ve Colloque international VSST, Marrakech, Maroc, 21-25 octobre 2007.

Villa N., Rossi F., A comparison between dissimilarity SOM and kernel SOM for clustering the vertices of a graph, Proceedings of WSOM 2007, Bielefeld, Allemagne, September, 3-6, 2007.

von Luxburg H., A tutorial on spectral clustering, Statistics and Computing, vol. 17, 2007, p. 395-416.
https://doi.org/10.1007/s11222-007-9033-z